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ABSTRACT:
Physical and deployment factors that influence infrasound signal detection and assess automatic detection

performance for a regional infrasound network of arrays in the Western U.S. are explored using signatures of ground

truth (GT) explosions (yields). Despite these repeated known sources, published infrasound event bulletins contain

few GT events. Arrays are primarily distributed toward the south-southeast and south-southwest at distances between

84 and 458 km of the source with one array offering azimuthal resolution toward the northeast. Events occurred

throughout the spring, summer, and fall of 2012 with the majority occurring during the summer months. Depending

upon the array, automatic detection, which utilizes the adaptive F-detector successfully, identifies between 14% and

80% of the GT events, whereas a subsequent analyst review increases successful detection to 24%–90%. Combined

background noise quantification, atmospheric propagation analyses, and comparison of spectral amplitudes deter-

mine the mechanisms that contribute to missed detections across the network. This analysis provides an estimate of

detector performance across the network, as well as a qualitative assessment of conditions that impact infrasound

monitoring capabilities. The mechanisms that lead to missed detections at individual arrays contribute to network-

level estimates of detection capabilities and provide a basis for deployment decisions for regional infrasound arrays

in areas of interest. https://doi.org/10.1121/10.0002650

(Received 11 July 2020; revised 23 October 2020; accepted 28 October 2020; published online 9 December 2020)
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I. INTRODUCTION

Infrasound signals from large sources, such as volcanic

explosions (Matoza et al., 2007), earthquakes (Mutschlecner

and Whitaker, 2005; Le Pichon et al., 2005), tsunamis (Le

Pichon et al., 2005), and mining explosions (Che et al.,
2019; Hagerty et al., 2002), as well as nuclear and chemical

explosions (Che et al., 2009; Che et al., 2014; Evers and

Haak, 2007; Park et al., 2014; Pasyanos and Kim, 2019;

Walker et al., 2011), can be observed at distances of hun-

dreds to thousands of kilometers from the source. The larger

propagation distances reflect the stratification of wind

speeds and atmospheric temperatures, which control static

sound speed and create narrow ducts through which signals

travel (Evers and Haak, 2007; Beasley and Georges, 1977).

Waves propagating these distances refract back to the

Earth’s surface as a result of atmospheric temperature and

velocity gradients within the four layers of the atmosphere

that include the troposphere (0–12 km), stratosphere

(12–50 km), mesosphere (50–80 km), and thermosphere

(80–320 km). From a signal detection perspective, boundary

layer arrivals tend to have group velocities or celerities

higher than 330 m s�1, tropospheric arrivals range from 310

to 330 m s�1, stratospheric arrivals range from 280 to 330 m

s�1, and thermospheric arrivals range from 180 to 300 m s�1

(Negraru et al., 2010).

A global network of 60 planned infrasound monitoring

arrays, part of the International Monitoring System (IMS)

operated by the Preparatory Commission for the

Comprehensive Nuclear-Test-Ban Treaty Organization

(CTBTO PrepCom) to detect atmospheric explosions is

nearing completion with 49 certified arrays as of June 2017

(Christie and Campus, 2010; Marty, 2019). The average

spacing between the IMS infrasound arrays is 1920 km

(Christie and Campus, 2010), which is sufficient for the

detection of 1 kT atmospheric explosions within

500–4500 km of the station (Green and Bowers, 2010); how-

ever, this spacing is insufficient for the detection of smaller,

local infrasound sources that may only be detectable within

a few hundred kilometers. Regional infrasound arrays oper-

ated for scientific experiments (Assink et al., 2016; Ceranna

et al., 2009) or as augmentation to existing seismic stations

(Che et al., 2019; Stump et al., 2007) supplement the IMS

coverage in regions of interest. Regional infrasound
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networks, which provide closer and more densely spaced

observations, render an opportunity to improve event detec-

tion, localization, and identification of smaller sources. For

example, regional observations of signals from the under-

ground nuclear explosions in North Korea in 2009, 2013,

and 2016 improved infrasonic localization estimates when

compared to estimates solely from the IMS stations (Che

et al., 2009; Che et al., 2014; Park et al., 2018). Similarly,

automated detections from a regional infrasound network

supplemented sparse recordings from the 2005 Buncefield

Oil Storage Facility explosive event that were observed on

IMS arrays, ultimately producing an improved event loca-

tion estimate within 35 km of the true source (Ceranna et al.,
2009). Finally, regional infrasonic networks offer the oppor-

tunity for long-term monitoring of natural hazards, such as

volcanos (De Angelis et al., 2012), and can provide data for

constraining energetic natural events, such as tornados

(Frazier et al., 2014).

The growing number of regional infrasound networks

motivates the need to quantify the best data processing prac-

tices needed to produce optimum event catalogs. This study

focuses on evaluating the performance of automated detec-

tion algorithms using real ground truth (GT) events

observed across a regional infrasound network occurring

over a range of atmospheric and noise conditions. Both the

IMS global network and smaller regional networks utilize

automatic processes to identify signals of interest using a

consistent objective detection metric in order to reduce ana-

lyst workload considering the large number of infrasonic

signals (Marty, 2019). A critical component of automatic

processing is detector optimization, which depends on

detection performance at individual arrays, which depends

on signal coherence across the array elements, signal fre-

quency content, and array-specific noise characteristics.

Within the context of this study, we define signals of

interest to be explosion generated signals with GT, whereas

noise results from any source of background emissions

that produce infrasound energy that obscures the signals of

interest. Infrasound background noise levels are known to

be highly frequency and wind dependent, varying by as

much as 60 dB (relative to 1 Pa) at a single frequency, pri-

marily dependent on wind conditions (Bowman, 2005).

Typically, recurrent noise sources, both coherent and inco-

herent, can increase the background noise level and reduce

array detection capability by decreasing the coherence

between individual array elements (Bowman et al., 2009).

Coherent noise sources produce signals that are spatially

correlated between array elements (Brown et al., 2014)

while incoherent noise sources, such as wind, are not spa-

tially correlated between array elements. Multiple studies

have documented that repeating or continuous coherent

noise sources can degrade the identification of signals of

interest using arrays (Woodward et al., 2005). The most

well-known examples of such sources of noise are the

microbaroms, which commonly produce coherent signals in

the 0.1–0.5 Hz frequency band. Additional sources of repeti-

tive signals within the 0.5–5 Hz band include noise related

to surf (Arrowsmith and Hedlin, 2005; Garc�es et al., 2003;

Le Pichon, 2004), thunder (Farges and Blanc, 2010), volca-

noes (Matoza et al., 2007), and anthropogenic activities,

such as mining, industrial activity, aircraft, or urban noise

(Bowman et al., 2009).

The adaptive F-detector (AFD) was developed

(Arrowsmith et al., 2009) to account for both correlated and

uncorrelated noise through modification of the conventional

F-statistic, which is based on an F-distribution, which

assumes that under the null hypothesis there is a ratio of two

random variables with chi-square distributions. The revised

detector reduces false alarms from coherent noise by

applying an adaptive analysis window that updates the

detection threshold, which may be elevated due to coherent

background noise. The AFD reduced false alarm detections

attributable to correlated noise across arrays in the produc-

tion of a two-year infrasound event bulletin, relative to the

nonadaptive detector (Park et al., 2014; Park et al.,2016;

Park and Stump, 2015), using data from a regional infra-

sound network in the Western U.S. AFD shows a fair pre-

dictive capability to detect small explosions (Carmichael

et al., 2020).

Seismoacoustic event bulletins (Park et al., 2014;

Walker et al., 2011) illustrate that the Utah Test and

Training Range (UTTR) is a major source of infrasound sig-

nals in this region. Despite these repeated known sources,

the Park et al. (2014) event bulletin, produced using the

AFD and including automatic association and location pro-

cedures, only includes 5 of the 47 known blasts from the

UTTR in 2012, which motivates this more in-depth

investigation.

Array-centric detection performance (Green and

Bowers, 2010; Le Pichon et al., 2008) is controlled by the

efficiency of signal propagation from the source to receiver,

signal arrival characteristics relative to the background noise

at the receiving station and the ability of the detector and/or

array elements, and the array detector ability to identify a

unique coherent signal of interest within a time series. The

small number of identified events in the bulletin of Park

et al. (2014) relative to the total number of known UTTR

events reflects several issues: (1) a lack of an atmospheric

waveguide so that energy does not efficiently propagate

from the source (UTTR) to the receivers; (2) a high noise

level at the receiver obscuring the signal; (3) problems with

methodologies for detecting and associating signals of inter-

est across the network; or (4) a combination of factors.

The UTTR events are infrasound sources where knowl-

edge of a facility location combined with seismically deter-

mined event times provides GT for infrasound signals to

address these issues. The primary goal of this study is to uti-

lize this GT data set to quantitatively assess and interpret

the detection performance of a regional infrasonic network.

This study will improve our insight into the causes of missed

arrivals. Arrays within the network are located from 84 to

458 km from the source where arrays located near the source

(84 km) to 200–250 km of the source provide the opportu-

nity to assess the automatic signal detector performance at
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distances within the acoustic “stratospheric shadow zone”

(Herrin et al., 2007; Negraru et al., 2010). A subsequent

analysis will address association and location.

This manuscript is organized as follows: Section II

describes the regional infrasonic network utilized in this

study. Section III describes five components used to assess

automated detector performance and evaluates mechanisms

for missed detections across the network. Section IV

discusses these results in the context of an estimate of detec-

tor performance at each array or station and an assessment

of conditions that impact infrasound monitoring capabilities.

II. DATASET

The Utah infrasound network (Arrowsmith et al.,
2008a; Stump et al., 2004; Hayward, 2010) consisted of a

total of 12 infrasound arrays, 9 integrated into the

University of Utah (UU) seismic network, and 3 operated

separately. Due to limited data availability as a result of

telemetry failures and individual array deployment times,

only seven of these arrays were used in this study. Their

locations are shown in Fig. 1. Table I summarizes array

locations and data recovery statistics for 2012. Each array

consists of four acoustic sensor elements, one center element

with three additional elements on 100 m legs, equally spaced

around the center. Infrasound sensors are each fit with eight

porous hoses to reduce wind noise (Stump et al., 2004).

Data were sampled at 100 s�1. Acoustic sensors at NOQ

are Chaparral Physics model 2.0 microphones (Dartmouth,

Nova Scotia, Canada) with a flat frequency range of 0.1 to

>100 Hz (Arrowsmith et al., 2008a; Park et al., 2014) and

recorded with a RefTek digitizer. BRP, FSU, HWU, LCM,

PSU, and WMU are equipped with Inter-Mountain

Laboratory (IML, Sheridan Wyoming, USA) sensors and

Q330 digitizers (Kinemetrics, Pasadena California, USA).

The frequency response for the IML sensors is flat from 2 to

30 Hz (Fisher, 2013; Hart, 2007). Data from the six stations

with IML sensors were corrected for instrument response to

simulate a widened flat response down to 0.1 Hz using

response corrections from IRIS (Washington, DC, USA) in

Obspy (Beyreuther et al., 2010).

GT data include 47 missile motor or propellant explo-

sions conducted at the UTTR during the spring, summer,

and fall of 2012 with yields from 1665 to 17 651 kg.1 Origin

times were verified with seismic arrivals recorded at the

closest seismometer in the UU network, BGU, approxi-

mately 26 km from the UTTR. Events occurred irregularly

over the time period with 1–2 events per week on weekdays

between the hours of 16:00 and 22:00 UTC, which corre-

spond to 10:00 and 16:00 local time.

III. METHODOLOGY

Within this section, we evaluate automated detector

performance and identify mechanisms for missed detec-

tions across the network. In Sec. III A, the automatic detec-

tor is applied to the array data to establish a baseline of

automatic detections and subsequent performance measure

across the network. Sections III B and III C utilize network

noise estimates and atmospheric modeling predictions to

assess these detection results. In Sec. III D, the impact of

the assumed detection parameters are quantified and con-

trasted against the analyst review of the data that identify

signals missed by the automated process. Finally in Sec.

III E, we assess events that the automatic detector did not

identify in order to understand the physical phenomena

that contributed to the missed detection, including (1) high

noise immediately prior to and during the expected arrival

time, which masks the signal of interest; (2) atmospheric

conditions unfavorable to propagation from the source to

the receiver; and (3) signal amplitudes below the noise

floor at the sensor.

FIG. 1. Locations of the seven four-element acoustic arrays (solid blue

triangles) used in this study within the SMU/UU seismo-acoustic network.

The red star denotes the UTTR, the location of the GT events.

TABLE I. Locations of infrasound arrays used in this study with data recov-

ery statistics. Data recovery is based on availability of the array data within

the predicted infrasonic arrival times for each GT event from the UTTR

during 2012.

Array Name Data recovery rate Latitude Longitude Number of elements

BRP 98% 39.47 �110.74 4

FSU 100% 39.72 �113.39 4

HWU 91% 41.61 �111.56 4

LCM 98% 37.01 �113.24 4

NOQ 98% 40.65 �112.12 4

PSU 81% 38.53 �113.85 4

WMU 100% 40.08 �111.83 4
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A. Automatic detection utilizing the AFD

Infrasound detection separates signals of interest from

noise. Multiple detectors have been developed for infra-

sound signals, each with its own characteristics, and include

the progressive multichannel correlation (PMCC; Cansi,

1995) algorithm, the gravity wave detection method (de

Groot-Hedlin et al., 2014), the standard F-detector

(Blandford, 1974), and the AFD (Arrowsmith et al., 2009).

The PMCC algorithm utilizes the consistency of time delays

between subnetworks of array elements to estimate coherent

plane wave characteristics for signals, including signal back-

azimuth and apparent velocity. The gravity wave detector

uses sub-arrays with long baselines, such as those (�70 km)

from the USArray transportable array (TA) elements to

identify coherent long-period gravity wave signals. This

methodology has been shown to be sensitive to impulsive

events and can distinguish distant events due to the large

number of arrays in the network despite the large spatial

separation between individual sensors. AFD, with its scaling

of the F-statistic, was developed to account for both corre-

lated and uncorrelated noise through modification of the

conventional F-statistic and detection threshold. Testing

with the AFD demonstrates reduced false alarms due to cor-

related noise across array elements, as compared to the con-

ventional F-detector (Park et al., 2014).

Prior infrasound studies (Park et al., 2014; Walker

et al., 2011) in the Western U.S. used a frequency band of

1–5 Hz for automatic processing based on observations of

regional infrasound signals within this band. An expanded

frequency band of 0.5–5 Hz is used in this study as larger

chemical explosions, such as those between 1665 and

17651 kg from the UTTR, produce infrasonic signals with

energy below 1 Hz (Arrowsmith et al., 2008b; Carmichael

et al., 2016; McKenna et al., 2007). This slightly broader

band is used to expand the range of possible signals of

interest.

The AFD utilizes the standard F-statistic calculation

(Blandford, 1974),

F¼ J�1

J

� �

�

Xn0þ N�1ð Þ

n¼n0

XJ

j¼1

xj nþljð Þ

2
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2
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XJ

j¼1

xj nþljð Þ�
1

J

XJ
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xm nþlmð Þ
" #( )2

0
@

1
A
;

(1)

where J is the number of sensors, xjðnÞ is the waveform

amplitude of the nth sample of the mean-free time series from

sensor j, lj is the time-alignment lag from beamforming, n0 is

the starting sample index for the processing interval, and N is

the number of samples in the processing window.

AFD accounts for temporal changes in noise by apply-

ing an adaptive window to update the detection distribution,

which makes a distinction between the signal and correlated

noise (Arrowsmith et al., 2009). In the presence of corre-

lated noise, the F-statistic (F2BT;2BTðN�1Þ), where B is the

bandwidth of the filtered data, T is the length of the detec-

tion window over which the power is averaged, and N is the

number of array elements, defined as

CF2BT;2BT N�1ð Þ: (2)

C is a scaling factor that aligns the peak of the distribution

of the F-statistic in the time window with the peak of the

theoretical, central F-distribution with 2BT, 2BTðN � 1Þ
degrees of freedom and is given by

C ¼ 1þ N
PS

Pn

� �
; (3)

with PS=PN denoting the correlated noise power to uncorre-

lated noise power (Shumway, 1971). Equation (2) quantifies

how narrowband noise (smaller B) reduces the effective

degrees of freedom in the F-statistic’s capability to detect

signals in noise.

Free detector parameters include the analysis time win-

dow; the overlap between consecutive windows, adaptive

window length for noise assessment and subsequent C-value

estimation; and the p-value used for signal identification.

For consistency, initial parameters used in this study are

those outlined in Park et al. (2014) and detailed in Table II.

We use these parameters to automatically process data from

the UU/Southern Methodist University (SMU) infrasound

network for the time period of 1 January 2012–31 December

2012 with the AFD.

In order to assess detector performance, we estimated

the detection rate with a simple measure,

number of automatically detected GT events

total GT events
:

This measure requires that (1) data for the acoustic channels

at each array exist; (2) the signal of interest, in fact, propa-

gates from the source to the receiver; and (3) the absolute

size of the source is large enough to generate a signal large

enough to be above the ambient noise across the array. The

adequacy of these assumptions will be reviewed in the sub-

sequent assessment of the detection statistics. Following

Che et al. (2011), we associate detections with a GT event if

the infrasound arrival time falls within a range derived from

the GT seismic origin time, the distance to the array, and

TABLE II. Automatic processing parameters for detection.

Parameter Value

Frequency band (Hz) 0.5–5

Time window (s) 30

Overlap (s) 15

Adaptive window (s) 3600

p-value 0.01
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assumed infrasonic celerities from 0.2 to 0.4 km/s (Negraru

et al., 2010), accompanied by backazimuth estimates within

610� of the true backazimuth.

Figure 2 displays the resulting total number of automat-

ically detected events at each array with an average percent-

age of detected events at an individual array of 51%. The

number of detections varies as a function of the array dis-

tance from the source with the arrays closest (NOQ at

84 km) and furthest from the source (LCM at 458 km)

detecting very few events, whereas arrays between 140 and

300 km identify 60%–80% of the GT events. Many of these

arrays fall within the proposed geometric shadow zone for

stratospheric arrivals (Herrin et al., 2007; Negraru et al.,
2010). Given the range of source-receiver separations and

azimuth distribution, as well as arrivals predicted from prop-

agation modeling, observations at arrays deployed within

200 km of the source are likely tropospheric arrivals while

observations at arrays beyond 200 km are likely strato-

spheric or thermospheric arrivals.

B. Utilizing noise estimates to assess station-specific
missed detections

Array-specific noise estimates are made to quantify

time-varying noise conditions at each array across the net-

work. These estimates were used to produce probability den-

sity functions (PDFs) to quantify seasonal noise estimates

applicable to the data analysis, following published method-

ologies (Bowman, 2005; Bowman et al., 2009; Brown et al.,
2014; McNamara and Buland, 2004). These PDFs represent

the distribution of noise conditions at each array as a func-

tion of frequency and can be used to estimate a signal-to-

noise ratio (SNR) for a source of a known size at an

assumed distance. Power spectral density (PSD) estimates

were made with 200 s windows and 50% overlap across

15 minutes of instrument-corrected infrasound data.

Multiple 15-minute windows were averaged to produce a

single, hourly PSD estimate. Noise PDFs are then calculated

using

P TCð Þ ¼ NPTC

NTC

; (4)

where NPTC is the number of spectral estimates that fall

within a 1-dB power bin, where bins range from 0 to

120 dB/Hz relative to 20 lPa and TC is a center period. NTC

is the total number of spectral estimates over all powers

with a center period of TC.

As this study focuses on the detection of repeating GT

signals with known origin times, the noise analyses were

restricted to time periods consistent with the GT event times

(from 16:00 to 22:00 UTC). Data from all days of the week

were utilized in the estimates. Infrasound noise includes

both natural and anthropogenic sources, which may vary

between weekdays and weekends (Park and Stump, 2015),

although work presented here does not try to separate these

effects.

Park and Stump (2015) conducted a similar noise study

for this network, producing 5% and 95% relative noise esti-

mates without instrument correction in order to focus on

seasonal changes. The expansion of this analysis using

PDFs documents notable differences in noise trends as the

densities include the full spectrum of noise characteristics

across the network. In contrast, the 5% and 95% noise esti-

mates illustrate the seasonal noise extremes at each station.

As most of the network is comprised of IML sensors whose

responses roll off below 2 Hz, characteristics of low fre-

quency noise across the network were not accurately repre-

sented in this previous work. Using data corrected for the

IML response provides absolute, low frequency noise

estimates that include quantification of the 0.2 Hz peak

associated with microbaroms. The microbaroms are consis-

tently observed across the network as highlighted at HWU

in Fig. 3(a). Noise at 0.2 Hz varies annually and appears

higher during the winter months at most arrays as a result of

microbaroms generated by winter storms over the oceans

(Bowman, 2005; Drob et al., 2003; Landès et al., 2012). We

interpret the strong low frequency noise peak (þ10 dB) that

centers near 0.2 Hz in the winter noise estimates as resulting

from microbaroms that originate in the Pacific Ocean and

arrive as a result of stratospheric wave propagation. We

attribute the lack of a similar peak in the spring and summer

noise estimates to seasonal reversals in the stratospheric jet

direction, which drives a change in the dominant micro-

barom source from the Pacific Ocean to both the Atlantic

Ocean and southern oceans.

Figure 3(b), as well as Fig. S1 in the supplementary

material,1 displays temporal and spatial noise variability

across the network. While median noise estimates remain

within the bounds of the IMS low and high noise models

(Bowman et al., 2009), our noise estimates are generally

high across the network relative to these bounds.

Background noise peaks in the spring and decreases in the

summer and fall. Relative noise levels vary across the net-

work; levels at LCM are consistently �20 dB higher than

levels at FSU or BRP. These estimates will be used to

explore the relationship between the noise variance and
FIG. 2. Number of automatically detected GT events using the AFD at each

array within the network (Fig. 1).
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automatic detection performance at each station. Although

the two noisiest arrays (NOQ and LCM) show the lowest

detection rates, we cannot easily establish a direct relation-

ship between the noise level and automatic detection perfor-

mance for these two arrays because of disparate deployment

range (84 km and 458 km, respectively) and azimuth (309�

and 3�, respectively) to the source. These differences moti-

vate a more comprehensive analysis that also includes a

comparative propagation path assessment.

C. Utilizing propagation modeling to understand
station-specific missed detections

While high noise at an array may contribute to missed

detections, there is the possibility that signals of interest

may be missed when they do not propagate from the source

to the array. Signal transmission loss over propagation dis-

tances can also reduce amplitudes so they do not exceed

background noise amplitudes.

In order to examine trends in expected signal propaga-

tion across the network, range-dependent ray-tracing

through realistic atmospheric models using the infraGA

acoustic ray-tracing program (Blom and Waxler, 2012) was

conducted. Propagation is modeled assuming a ground ele-

vation of 1.6 km above sea level, indicative of the average

station elevation across the network. Three-dimensional,

range-dependent ray-tracing was conducted for each event

using the 1-h ground-to-space (G2S; Drob et al., 2010; Drob

et al., 2003; Drob et al., 2013) profiles centered at the source

for the hour in which the GT event occurred. For time peri-

ods where the exact 1-h profile was unavailable, we

substituted a profile from the closest time interval (within

24 h; see Appendix). Ray-tracing used the following param-

eters: launch angles from 0.5� to 45�, 75 bounces in order to

capture the near-source direct arrivals, and an inclination

step of 0.1 in order to provide a higher density of arrivals.

Utilizing the expected frequency content of signal arrivals,

0.5–5 Hz, and an average wave velocity of 0.3 km/s, we esti-

mate signal wavelengths between 0.15 and 1 km.

Extrapolating for error, direct arrivals were, thus, assumed

to be comprised of any ray that arrived within 2 km of the

center of each array.

Figures 4(a)–4(c) include examples of predicted direct

arrivals for individual GT events for spring, summer, and

fall. Winter is excluded as no GT events occurred during

this season in 2012. The three ray-tracing examples high-

light dominant seasonal trends. Figure 4(a) documents ray-

tracing from early April, a transitional time between winter

and summer stratospheric winds as reflected in the westward

stratospheric propagation. By mid-April, stratospheric winds

weaken and the summer waveguide toward the east is estab-

lished between late May and early June [Fig. 4(b)]. The tro-

pospheric jet is the familiar “jet stream” and is dominantly

eastward in the Western U.S. with variable north and south

components. Unlike the stratospheric jet, the jet steam varies

on a daily to weekly scale, which is evident in Figs.

4(a)–4(c), where ray-tracing predicts arrivals consistently to

the north through the spring and summer, changing to the

south-east in the October example [Fig. 4(c)]. The model

predicts thermospheric returns along all cardinal directions

during all three seasons; however, we require assessments of

the attenuation and predicted signal amplitudes to determine

whether a thermospheric signal will be observable at arrays

of interest within the 0.5–5 Hz frequency band used for

detection (Akintunde and Petculescu, 2014; de Groot-

Hedlin, 2016; de Groot-Hedlin et al., 2010).

Figures 5(a)–5(c) summarize the percentage of predicted

phase types at each station and associated range in the net-

work based on the season with pie charts [Figs. 5(d)–5(f)]

FIG. 3. (a) A noise PDF example capturing the seasonal (winter) noise trend at HWU. (b) Seasonal trends in median noise at three arrays across the network.

Colored lines indicate the median values from the noise PDFs produced during the hours of the day when GT events occurred. The dashed black line repre-

sents the IMS low noise model (Bowman et al., 2009) while the solid black line represents the IMS high noise model. Spring (red): March, April, and May;

summer (blue): June, July, and August; fall (green): September, October, and November.
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quantifying the total predicted arrivals across the network for

each season to the right of each panel. Percentages are calcu-

lated from the total number of direct rays for each phase,

derived by predicted celerity. During the spring and summer

months, geometric arrivals are not predicted at arrays across

the network for 50% and 48%, respectively, of the GT

events. The remainder of arrivals is dominated by a combina-

tion of tropospheric and thermospheric arrivals at the arrays

of interest. In the fall months, 78% of the predicted arrivals

are predominately tropospheric with a small number of ther-

mospheric arrivals predicted at BRP, PSU, and LCM. While

there is a clear stratospheric waveguide in all three example

profiles, stratospheric arrivals are not predicted at any of the

arrays within the network. These seasonal differences are

driven by a directional change in the dominant tropospheric

jet, which increases the number of tropospheric arrivals at all

arrays across the network; at arrays close to the source, this

corresponds to change from “no propagation predicted” to

tropospheric arrivals and at arrays further from the source,

this corresponds to a change from thermospheric to tropo-

spheric arrivals.

The relationships between automatic detection rates and

the percentage of events with predicted arrivals vary across

the network and are primarily impacted by source to

receiver distance. At arrays closest to and farthest from the

source, propagation modeling indicates that sparse raypaths

spatially coincide with low automatic detections. Arrivals

modeled at LCM take thermospheric paths during the spring

and summer months and tropospheric paths during the fall.

Predictions of thermospheric arrivals during the spring and

FIG. 4. [(a)–(c)] Direct arrivals from ray-tracing for events occurring in the spring (left), summer (middle), and fall (right). Each dot represents a predicted

direct arrival from ray-tracing, and the dot color represents the celerity (i.e., predicted infrasonic phase) of the arrival. Array locations are denoted by black

triangles and the GT location is denoted by the red star.

FIG. 5. [(a)–(c)] Summary of predicted ray arrivals across the network as a function of season, where grey indicates no predicted arrivals, red indicates tro-

pospheric arrivals, green indicates stratospheric arrivals, and blue indicates thermospheric arrivals. [(d)–(f)] Overall predicted ray arrivals across the network

for each season.
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summer suggest that although models predict raypaths, sig-

nal amplitudes may attenuate such that they are too small

relative to background noise levels at the receiver as few

signals with thermospheric celerities were identified. At

arrays between 200 and 300 km from the source, high rates

of automatic detection correlate with higher numbers of

arriving raypaths. For arrays between 150 and 200 km from

the source, high rates of successful automatic detection con-

trast with low percentages of predicted arrivals. This sug-

gests atmospheric models do not include wave propagation

path characteristics for these mid-range distances. Further

modeling, possibly with refined atmospheric characteriza-

tions that consider arrival scattering sourced by wind shear

(Blixt et al., 2019), may be necessary to refine the relation-

ships between the success of signal detectors and propaga-

tion predictions at all ranges.

D. Improving the detection data set with parameter
optimization and analyst review

We varied detector parameters to determine if addi-

tional signals could be identified using AFD, thereby pro-

ducing a more robust set of automatic detections and

providing insight into the effectiveness of the detector based

on the GT. Following a similar study conducted in the

Korean peninsula (Park et al., 2016), we ran automatic

detection with p-values of 0.03, 0.05, 0.07, and 0.09.

Additional detections were identified following the proce-

dure detailed in Sec. III A; Fig. 6 summarizes the number of

additional GT events identified by automatic processing

with each p-value increase. A total of five additional detec-

tions at NOQ, four additional detections at BRP and HWU,

three additional detections at PSU and WMU, and two addi-

tional detections at LCM and FSU resulted. The overall

number of additional GT detections is small, however, it

represents an additional 7%–11% of the total GT identified,

depending on the station. Note that detection with a p-value

of 0.09 only added one additional detection at LCM, sugges-

ting that automatic detection with a p-value of 0.07, and

even 0.05 at some arrays, is sufficient for the detection of

GT events utilizing the UU/SMU infrasound network.

The initial p-value of 0.01 was chosen to minimize false

alarms while providing a set of automatic detections for the

events; increasing the p-value in order to enhance GT detec-

tions comes with a trade-off of increasing potential false

alarms, as well as increasing analyst burden through produc-

tion of a larger overall detection dataset (Carmichael et al.,
2016). Figure 7 compares the total number of detections for

automatic processing with each p-value, derived as the num-

ber of detections that occur on each day with a GT event,

with “true” GT event detections.

We compare detection numbers both across arrays within

the network as well as across the span of p-values used for

detection. Without knowledge of infrasound-producing sour-

ces within the region, we cannot clearly attribute increased

detections to true events versus coherent noise sources. This

incomplete understanding of sources limits our ability to

assess the relationship between true detections and false

alarms. We, therefore, focus on trade-offs between increasing

GT detection rates and both analyst and processing burdens.

At all arrays, an increase in p-value produces an

increase in GT event detections, accompanied by an expo-

nential increase in total detections. For example, at HWU,

detection with a p-value of 0.01 identifies 28 GT events

while detection with a p-value of 0.05 identifies 31 GT

events, corresponding to a 7% increase. In contrast, detec-

tion with a p-value of 0.01 identifies 471 other detections

while detection with a p-value of 0.05 identifies 1235 addi-

tional detections, corresponding to a 165% increase. In the

case of this GT study, the known source time provides a

basis for separating known signals from noise. However,

these comparisons demonstrate that modifying automatic

detector parameters drastically increases overall detection

rates, indicating that while automatic detection with high

p-values is necessary for maximizing the detection of

low SNR signals, it comes with a trade-off of significant

processing and analyst burden.

FIG. 6. Summary of additional event detections at each station through

incremental p-value parameter increases, shown against the analyst review.

FIG. 7. Summary of the relationship between the total number of GT event

detections compared to all detections as a function of the p-value. As the

p-value increases, both the number of GT detections and the overall number

of detections increase. Detections are defined as all detections that occur on

a day with a GT event.
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The analyst review of the data was undertaken to see if

additional GT event detections could be identified in order to

interpret and possibly improve the automated results. The ana-

lyst review identified time periods where a signal of interest

consistent with the GT information was clearly present in the

time series waveform data but unidentified by the detector.

These detections add to the completeness of the detection cata-

log while also serving to identify detections missed by the auto-

matic detector. In contrast to the formulation of the automatic

detector, the human analyst benefited from a priori knowledge

of an event occurring at a given day and time. The analyst

detection utilized an interactive frequency-wavenumber (FK)

array analysis to declare a detection when beamforming pro-

duced a consistent (>10 s) backazimuth estimate within 610 of

the source backazimuth (Che et al., 2011) in tandem with

increased correlation estimates across the array as documented

by the F-value associated with the estimated backazimuth.

Figure 8 shows an example detection for an event at BRP on

2012–05-14T17:56:34UTC. The blue window in Figs.

8(a)–8(e) highlights the analyst-declared detection based on

consistent backazimuth estimates at �316�, an elevated signal

correlation and an elevated F-value.

Figure 6 documents the total number of supplemental

analyst detections in purple. The analyst review added a sig-

nificant number of detections at all arrays within the network.

As is the case for seismic detectors, these results suggest that

the analyst review improves automated detections.

E. Identifying mechanisms contributing to missed
detections through combining of noise and
propagation path effects

The kernel density estimate (KDE; Latecki et al., 2007)

analysis provides a basis to quantify automatic detection

performance in an integrated way by capturing the effects of

both background noise and propagation path effectiveness

based on continuous background noise assessments. We

apply this analysis to identify whether a series of missed

detections are attributed to (1) high noise masking the signal

of interest at the time of arrival, i.e., a true “missed

detection”; (2) significant signal attenuation along the prop-

agation path; or (3) a combination of both.

For a given array geometry, the overall best beam signal

and residual can be extracted as a means of removing inco-

herent noise and enhancing a signal of interest (Evers,

2008). We define the best beam to be the sum of all time-

aligned traces for the slowness at the maximum detector

value. This can either be done for individual frequency bins

or the maximum detector value from a set of bins. The deri-

vations of the best beam and residual can be found in

Appendix D.1 of Evers (2008). The assessment below com-

pares the spectral amplitudes of the beamed waveform and

beam residual, derived for the maximum detector value

across 0.5–5 Hz to background noise KDEs in order to iden-

tify time periods when the beamed signal spectral amplitude

is higher than typical levels, due to high noise across the

array or when the beamed signal spectral amplitude is com-

parable to or below the typical noise levels. The latter indi-

cates that a lack of positive GT event detections is likely to

the result of a lack of successful signal propagation from the

source to receiver.

As discussed in Sec. III B, we use background noise sta-

tistics that are based on waveform data from the hours

during which GT events occur (16:00–22:00 UTC) to pro-

duce station-specific monthly noise estimates with a KDE

algorithm, which summarizes the probability of noise ampli-

tudes at the time of the event as a function of frequency. We

calculate the cumulative distribution ðCsig; CresidÞ of the sig-

nal beam and the residual spectral amplitudes (Psig; PresidÞ at

a frequency (f ) of interest as

Csig fð Þ ¼
ðPsig fð Þ

�1
q f ;Pð ÞdP; (5a)

Cresid fð Þ ¼
ðPresid fð Þ

�1
q f ;Pð ÞdP; (5b)

where qðf ;PÞ is the KDE estimate of the noise spectral

amplitude in dB at frequency f under the assumption that

the signal of interest is comprised of the beamed waveform

with the background noise characteristics contained within

the residual. The observed beamed signal or residual spec-

tral amplitudes, Psigðf Þ or Presidðf Þ are derived by normaliz-

ing the PSD of the best beam and residual for the amplitude

(dB/Hz re 20 lPa) using the relation Psigðf Þ;Presidðf Þ
¼ 10 log 10ðPSDsig; PSDresidÞ.

We compute the beamed signal and residual coefficients

by marginalizing the predicted noise amplitude distribution

qðf ;PÞ from �1 to the observed beamed signal or residual

spectral amplitudes, Psigðf Þ or Presidðf Þ, in each frequency

bin. These integrations are computed across a time window

FIG. 8. Waveform and array processing example for an event on 2012-05-

14T17:56:34 at BRP with clear coherent background noise that was missed

during automatic detection but identified during the analyst review.

[(a)–(d)] Array processing results in the form of the F-value, estimated trace

velocity, estimated backazimuth, and the calculated correlation between

array elements. Red line in (c) denotes the true backazimuth (316�) from

the receiver to the source. (e) Beamed waveform for the time period in

which the blue window represents the analyst-defined detection.
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of data, defined either by an analyst-identified window

where a detection occurred or for time periods where detec-

tions were not identified, by the expected signal arrival win-

dow spanning 0.2–0.4 km/s. We then average values across

the frequency band of interest to obtain the singular coeffi-

cient values, Csig and Cresid.

The cumulative distribution coefficients Csig and Cresid

are bounded between zero and one and can be used to inter-

pret how the spectral amplitude of a particular beamed sig-

nal and its residual compare to the background noise

amplitude statistics represented by the noise KDE. A num-

ber of relationships between the coefficients exist.

(1) If Cresid is close to zero, the residual spectral amplitude

is lower than typical values. This case suggests that

background noise of the time series is below average.

(2) If Cresid is close to one, the residual spectral amplitude is

higher than typical values, suggesting that background

noise of the time series exceeds average values.

(3) If Cresid falls around 0.5, the residual spectral amplitude

is equal to typical noise values.

(4) If Csig is close to zero, the amplitudes of any signal

within the time series is unlikely to exceed background

noise amplitudes, which may be driven by attenuation as

a signal propagates from the source to receiver.

(5) If Csig is close to one, the spectral amplitude is higher

than typical noise amplitudes, corresponding to a high

amplitude signal that should be easily detected.

Relationships between the two coefficients can be used

to interpret various detection scenarios.

(1) If a signal of interest is present, we expect Csig � Cresid:
(2) When Csig � Cresid, the beamed signal power is less than

the measured residual, which suggests that the lack of

an arrival is due to propagation effects in relation to the

time dependent noise.

(3) If the time series contains high background noise,

Cresid � 0 � 0:75, we interpret that while a signal may be

present, spectral amplitudes do not exceed the residual

spectral amplitudes driven by the increased background

noise. This indicates that successful event detection is

likely impeded by both background noise at the station

as well as propagation-related effects.

(4) High background noise may also manifest in a relation-

ship where Csig � Cresid; with both relatively large, indi-

cating that while a signal is present, background noise is

high.

(5) If Csig � Cresid and both are relatively low, we interpret

that while background noise is low, beamed spectral

amplitudes are low as well, indicating that signals did

not efficiently propagate to the station of interest.

We use these ratios to interpret characteristics of the

time series, particularly for time periods where we lack an

automated signal detection from a GT event.

Figure 9 shows an example application of this technique

to our data with two additional examples included in the

supplementary material.1 Figure 9(a) displays the signal

(black) and extracted residual (blue) spectral estimates from

a UTTR event on 09–11-2012 that the automated detector

successfully identified at HWU. A 2–3� increase in spectral

energy in the signal compared to the residual from 0.7 to

4 Hz is illustrated; output from FK processing supports

backazimuth and trace velocity estimates, which remain

consistent with arrivals from the UTTR. Figure 9(b) depicts

an example of KDE integration for the signal and residual

amplitudes at the peak signal frequency of 2.3 Hz. This

processing integrates the KDE from the lower limit ð�1Þ
to either the upper signal limit or the upper residual limit

at each frequency interval; we compute the upper limit

from the maximum power of the beamed signal or residual

spectra at the frequency of interest. Figure 9(c) shows the

results from this integration as a function of frequency in

the form of cumulative distributions ranging from zero to

one with signal values in black and residual values in blue.

These integrated results are consistent with visible trends

in the spectra; a clear separation between cumulative dis-

tribution values is documented for the frequency band

from 0.3 to 4 Hz, consistent with a high SNR signal pre-

sent in the data. Figure 9(d) compares the Csig to Cresid

values at each frequency. Csig ranges from 0.1 to 1.0,

while Cresid remains near 0.2. The low Cresid values and

corresponding high Csig values indicate that this signal has

a high amplitude, which occurred during a period of low

background noise. This produced an arrival with a high

SNR signal that was easily identified by the automatic

detector.

The integrated KDE results for all arrays where events

were not detected, averaged across the 0.5–5 Hz band, are

displayed in Fig. 10. Examination of the relationships

between Csig and Cresid at each array provides insight into

the mechanisms contributing to missed detections. At most

arrays, two distinct “clusters” group missed detections: one

in the upper right quadrant, which corresponds to missed

detections due to high noise (dashed blue ellipse), and one

in the lower left quadrant, which corresponds to missed

detections due to propagation effects, circled in dashed

green.

The three examples illustrated in Fig. 9, as well as in

Figs. S2 and S3 in the supplementary material,1 show that

these clusters are useful in assessing sources of a missed

detection. For events where a signal was not automatically

detected, the missed detection cannot be attributed to high

noise if the average Cresid value is low and is, therefore,

expected to be attributed to propagation effects.

Alternatively, if the average Cresid value is high, the missed

detection can be attributed to high noise (either coherent or

incoherent) across the array. We consider it likely that there

is overlap in these cases and some detections may be missed

due to a combination of both factors. The use of this meth-

odology provides insight into the phenomena causing

missed detections and may assist in future automatic detec-

tor improvements. It also provides a tool for assessing a net-

work of arrays and input for improving a set of regional

arrays for improved monitoring.
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IV. DISCUSSION

A. Establishing a detection baseline

An automatic detection catalog was produced that

applied a realistic set of processing parameters in order to

optimize the detection of a series of GT events and subse-

quently produce a physical interpretation of automatic

detector limitations. These baseline metrics are useful to

assess network detection performance by providing a mea-

sure of how well the detector identifies signals that propa-

gate from the source to the receiver. In total, the automatic

detector that was parameterized with a grid of p-values suc-

cessfully identified between 16% and 85% of GT events

across the network with the lowest rate of successful detec-

tion occurring at NOQ, the closest and noisiest station in the

network. A subsequent analyst review evaluated if signals

visible to the analyst were missed during automatic

processing.

Figure 8 shows an example of an event that was missed

by the detector but identified by the analyst. In general, sig-

nals that the automatic detector missed but that were identi-

fied by the analyst show F-values that exceed background

F-values by only 1–2 units. This marginal signal strength

indicates low signal coherence across the array, as well as

low SNR signals. Unlike the automatic detector, the analyst

did not apply a duration threshold and identifies short dura-

tion, <10 s, signals that may not be long enough in duration

to trigger the detector. Once automated processing identifies

an infrasound event, additional arrivals may be isolated and

identified by careful analyst review within the context of a
priori analyst knowledge of both predicted arrival times, as

well as known backazimuths between the receiver and

source. The successful identification of additional signals

from GT events suggests that the analyst technique of utiliz-

ing a priori origin time and location knowledge to predict sig-

nal arrival times could be included in automatic detection

processing in an iterative effort to improve detection rates.

We anticipate that this hybrid technique would increase true

detection rates by considering not only the highlighted signal

characterizations but also, in some cases, a priori information

relative to a known set of sources or source locations.

Additionally, results indicate that p-values greater than

0.01 could be used for optimizing detection of the UTTR

events. In the context of infrasonic detection studies, it is

extremely difficult to separate what constitutes a true detec-
tion from what is considered to be a false alarm.

FIG. 9. Example of cumulative integration processing for HWU using waveforms from an event on 09-11-2012. (a) Beamed signal (black) and residual

(blue) window spectra. (b) Example of integration limits; the green line denotes the KDE derived from the September noise model of GT hours at the fre-

quency of interest (2.3 Hz). The black line indicates the signal upper integration limit in dB and blue indicates the residual upper integration limit in dB. (c)

Cumulative distribution values for each individual frequency integration across the band of interest (0.5–5 Hz). (d) Comparison of individual residual and

signal cumulative distribution values. Horizontal clustering along the x axis indicates high signal and low noise.
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Arrowsmith (2018) defines a monitoring false alarm (MFA)

to be any event hypothesis that is physically correct but

where the event itself is not of interest to explosion monitor-

ing, whereas an event of interest is defined to be any large

transient event that could be consistent with an atmospheric

or underground explosion. Without a formal definition or

understanding of additional sources of infrasound within the

Western U.S. region, we utilize overall detection numbers to

illustrate the relationship between the p-value and increased

analyst burden. Automated processing with a variety of

p-values produces a more robust detection data, yet, comes

with the trade-off of a significant increase in the number of

daily detections, which leads to additional processing and

analyst burden. Our data show that increase in non-GT

detections can exceed GT detections by more than a factor

of 20. Fortunately, known source characteristics (origin time

and location) in the case of the UTTR GT events allow for a

targeted assessment of detections, which alleviates most of

the increased analyst burden. Without this source informa-

tion, the benefit of additional event detections may be out-

weighed by the burden to the analyst workload.

Processing following the methodologies outlined may

not be realistic for monitoring situations with unknown

sources.

B. Establishing a relationship between event yield
and detection capability

The investigation of a relationship between event yield

and detection capability was motivated by a similar study of

infrasound detection at regional distances (McKenna et al.,
2007). This study utilized iron mine explosions between

9100 and 45 500 kg to evaluate the performance of a singu-

lar infrasound array at 390 km from the source with no docu-

mentable relationship between positive event detection and

explosion yield. As the McKenna (2007) study only used

one array, we use the variable distance distribution of our

network to examine this relationship at variable source to

receiver distances.

Figures 11(a) and 11(b) document the relationship

between array distance and event yield, determined as the per-

centage of successfully detected events for each explosion size.

Following the scaling convention from Denny and Johnson

(1991), we present the explosion yield as the cube root of given

event yields. GT events were binned into five distinct yield

ranges, and percentages are evaluated as the number of suc-

cessful detections at each station for the number of events

within each bin. As previously shown, detection capability is

driven by the station’s distance from the source, which is

reflected in the yield evaluation. In Fig. 11(a), we show similar

distance-driven patterns in the yield comparisons where, at sta-

tions near to and far from the source, there are higher rates of

automatic detection for events with larger yields. At stations

between 100 and 300 km from the source, there is no clear

relationship between station-level detection capability and

event yield across the network. In Fig. 11(b), we demonstrate

that while analyst detections add to the completeness of the

detection dataset, there again is no clear relationship between

detection capability and event yield. Figures 11(a) and 11(b)

demonstrate that there is no clear dependence between array

distance from the source, event yield, and detection capability;

however, we note that this relationship is only evaluated over a

small set of event yields and at regional distances between 84

and 458 km from the source. Therefore, this conclusion is only

valid within the range of explosion yields demonstrated.

C. Understanding true “missed” detections

Following automatic detection and supplemental ana-

lyst review, we analyzed signal spectral amplitudes using

FIG. 10. Overall cumulative signal and

residual values at each array, deter-

mined by the average value across

0.5–5 Hz. Red dots are values calcu-

lated for missed detections.
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KDEs that are based on background noise estimates. This

analysis provided a statistically justified understanding of

missed detections across the network. Figure 12 illustrates

that the mechanisms that led automatic detection misses,

which we later identified through automatic detector param-

eter changes, vary across the network (blue and green

hashed areas). These comparisons suggest that across the

network, the initial p-value of 0.01 used for automated

detection does not successfully detect signals of interest in

situations where propagation effects lead to low energy

arrivals at a station, resulting in decreased SNRs that are

insufficient to trigger the power-based AFD. At some arrays,

the initial p-value used for detection does not successfully

detect signals of interest in high noise environments.

Optimal parameter choices for automatic processing may

need to vary across a network as a function of signal propa-

gation distance as well as station noise characteristics.

We attribute detections that are missed by automatic

processing but later identified through the analyst review to

be due to both high noise and propagation effects at arrays

across the network (Fig. 12, blue and green dashed bars).

These results demonstrate that the analyst review is neces-

sary for producing a robust GT detection set as automatic

processing utilizing the AFD misses a number of signals

across the network. These signals are missed due to both

high noise at the array, which reduces the signal coherency

to levels insufficient for triggering the automated detector,

and insufficient propagation paths between the sources and

receivers, leading to low signal amplitudes which are simi-

larly insufficient to trigger the power-based detector.

Additionally, in some cases, cumulative distribution

values for events that were successfully identified during

initial automatic detection processing fall within both the

dashed blue “high noise” circles and the dashed green “poor

propagation” circles shown in Fig. 10. These distributions

are assumed to be due to the methods used for producing

them; the analysis considers spectral amplitudes but does

not include the coherency of the residual. Events that fall

within missed detection clusters may contain coherent noise

that increases the detection threshold, and such cases cannot

be resolved or accounted for in the current methods. A more

in-depth analysis of the background noise, including both

the amplitude and coherence structure, is needed to more

fully characterize the detection statistics. We concede that

the analysis in this paper focusing on amplitudes is only a

useful first step for further understanding the characteristics

of automated, analyst, and missed detections.

We deemed the remaining detections as true missed

detections because neither automatic processing, parameter

optimization, nor analyst review identified these events.

Utilizing cumulative distribution values from the KDE anal-

ysis, we determine that between 20% and 35% of missed

detections at the closest arrays (NOQ, HWU) and 21%–39%

of missed detections at arrays furthest from the source

(PSU, LCM) are primarily due to propagation effects. High

noise drives between 3% and 5% of missed detections at

these arrays. In contrast, missed detections at arrays between

125 and 300 km from the source can be attributed primarily

to high noise between 11% and 25% of missed detections,

whereas 5%–8% of missed detections at these arrays are due

to propagation effects. There are no identifiable seasonal

trends in missed detection rates despite significant variabil-

ity in both seasonal atmospheric propagation and noise lev-

els across the network.

Although LCM and NOQ have the highest noise levels,

analysis of propagation predictions and typical noise levels

FIG. 11. (Color online) (a) Comparison between the station distance from the source (km) and the number of successful automatic event detections as a

function of the event yield in kg1/3. Marker color and size represent the percentage of GT events within each yield bin, and the total number of events within

each yield bin are shown in the histogram along the y axis. (b) Comparison between the station distance from the source (km) and the number of successful

total (automatic and analyst) event detections as a function of the event yield. Marker color and size represent the percentage of GT events within each yield

bin. Missed detections at each station are categorized by phenomena that contribute to missed detections.
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at the times of events implies that missed detections at these

two arrays remain primarily caused by propagation effects

instead of noise-related effects. This suggests that noise

assessments alone cannot be used to completely assess array

capability. Conversely, the noise models shown in Fig. 3(b)

demonstrate that at some of the quieter arrays within the net-

work (BRP, HWU, PSU, and WMU), a majority of missed

detections are due to uncorrelated noise. This result indi-

cates that despite noise levels being low on average, these

arrays are sensitive to incoherent noise that is most likely

attributable to wind gusts (Berglund et al., 1996; Shields,

2005).

We suggest that missed detections due to propagation

effects relate to typical atmospheric propagation across the

network. In general, we predict tropospheric arrivals to the

north-northwest (NNW)–north-northeast (NNE) of the

UTTR, resulting in direct phase arrivals at individual arrays

for 30%–70% of the time. We expect stratospheric arrivals

to the west during summer months and to the east during

winter months but do not predict such signals to propagate

directly from the source to any receivers within the network

given the dominantly north-south distribution of the network

and the lack of detonations in the winter. Our modeling also

predicts thermospheric arrivals in all directions with varying

degrees of attenuation. The high number of missed detec-

tions at arrays within 200 km of the source (NOQ, WMU,

HWU) can be attributed to a lack of a conducive tropo-

spheric duct for propagation or to GT events occurring

during time periods when the tropospheric duct narrows or

changes direction. Similarly, we can attribute the missed

detections at LCM, which locates 458 km from the source to

one of three effects, either (1) GT events occur during time

periods where the predicted thermospheric duct range termi-

nates prior to 458 km, (2) excessive attenuation along ther-

mospheric propagation paths, or (3) signals arriving within a

frequency band than mismatches with those used by auto-

matic detection.

The combination of automatic detections and analyst

picks provides statistics on signal propagation across the

network with observable signals at a minimum of one

receiver within the network for 91%–96% of the GT events,

depending on the station. Propagation modeling statistics

derived from Figs. 5(d)–5(f) indicate that signals would

propagate from the source to a single receiver for between

55% and 80% of the events and suggests that either some of

the propagation paths are non-geometric (e.g., scattered

from fine scale structures in the atmosphere) or atmospheric

models do not fully capture the variability for the regional

propagation distances used in this study. Others document a

similar discrepancy between predicted and observed infra-

sound arrivals, particularly at arrays within the classical

“shadow zone” (Herrin et al., 2007; Negraru et al., 2010),

FIG. 12. (Color online) Missed detections at each station categorized by phenomena that contributes to missed detections. Missed detections due to noise

are in blue and missed detections due to propagation effects are in green. Detections are separated based on how they were identified: detections identified

by parameter optimization are dashed, detections identified by the analyst are hashed, and true missed detections are solid.
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which we presume is caused by small-scale variabilities in

the atmosphere, wind shear, or internal gravity wave pertur-

bations to the smoothed background atmospheric profile

(Blixt et al., 2019). Finally, several studies of sources with

infinite frequency theory thoroughly documents that geo-

metric ray-tracing does not accurately predict stratospheric

arrival tails from large explosive events (Nippress et al.,
2014; Vergoz et al., 2018). These limitations may explain

the discrepancies between observed and predicted arrivals at

stratospheric distances, i.e., BRP and LCM. More extensive

analyses of individual arrivals are needed to fully under-

stand the phase characteristics of arrivals from the UTTR

events.

V. CONCLUSIONS

The systematic detection and characterization of a set

of arrivals from GT sources in the Western U.S. throughout

the spring, summer, and fall of 2012 is used to evaluate fac-

tors influencing infrasonic signal detection and automatic

processing performance across a network of regional infra-

sound arrays. Automatic detection followed procedures and

parameters that have been previously tested for the detection

of regional infrasonic signals utilizing the AFD in both the

Western U.S. and the Korean Peninsula. Results indicate

that automated processing with a p-value of 0.01 is insuffi-

cient for identifying events of interest at this particular

regional network where arrays are located between 84 and

458 km from the source and most fall within the strato-

spheric shadow zone. Although increasing the p-value for

automatic processing successfully identifies more events, it

comes with a significant processing and analyst burden,

quantified in Fig. 7 by the cumulative number of daily detec-

tions. In this study, analyst burden is alleviated through

knowledge of the event origin time and location. Processing,

following the procedures outlined within this manuscript,

may not be applicable for monitoring purposes when sour-

ces are unknown.

A subsequent analyst review increased the percentage

of successful detection to between 50% and 90% of GT

events, depending on the array. Analyst-identified detections

differ from automatic detections in the following ways:

(1) They are generally low in signal power (low SNR),

(2) they have low signal coherence across the array, and

(3) arrivals are of short duration, <10 s.

Results also indicate that the analyst review is necessary

for producing a robust GT detection set as automatic proc-

essing utilizing the AFD misses a number of signals across

the network. The analyst was aided significantly by source

information, in particular a priori knowledge of predicted

signal arrivals.

The combination of the analyst review and KDE analy-

sis of the spectral amplitudes demonstrates that signals may

be missed when propagation conditions are poor from the

source to the receiver, reducing signal amplitudes and

resulting in insufficient signal strength for the array to

detect. We predict that arrivals at arrays that are far from the

source are highly attenuated thermospheric arrivals, which

may lack the signal strength to exceed high correlated back-

ground noise. Similarly, arrays within 100 km of the source

detect very few events due to both high background noise

and lack of conductive propagation paths from the source to

receiver.

Although seasonal trends in propagation, noise, and

detections from unidentified sources are well documented

(Green and Bowers, 2010; Nippress et al., 2014; Park et al.,
2014; Le Pichon et al., 2008; Le Pichon et al., 2012), detec-

tions of GT events within this study do not follow any clear

seasonal trend. Prior studies (Park et al., 2014; Park and

Stump, 2015) identified seasonal trends in detections and

noise due to both seasonal changes in source distribution

and atmospheric waveguides (Evers and Siegmund, 2009).

Alternatively, this study focuses on repeating events from a

stationary source. The lack of seasonal detection trends is

due to predominately tropospheric and thermospheric arriv-

als at arrays within the network; the paths for these arrivals

are less seasonally dependent than stratospheric paths. This

study represents the first quantification of AFD perfor-

mance, utilizing events with GT information, as well as the

first assessment of performance in terms of coherent and

incoherent noise types. As this study mirrored automatic

detection procedures from the Park et al. (2014) study, the

higher rates of successful GT event detection across the

network indicate that the lack of GT events present in

the event bulletin is due to failures within either automatic

association or location procedures and not failures in the

ability of the AFD to identify GT events originating at

the UTTR.

We find no direct relationship between event yield and

detection capability, i.e., larger events are not consistently

identified by more arrays across the network. This observa-

tion complements results from McKenna et al. (2007), in

which a regional infrasound array located 390 km from a

mine in Minnesota was able to detect mining blasts between

20 000 and 100 000 lb (9100–45 500 kg, for comparison)

with no identifiable relationship between detection capabil-

ity and explosion yield. We note that this conclusion is only

valid for the relatively small range of yields within this

study. Results indicate that successful event detection at

regional distances is driven primarily by variations in wind

conditions and atmospheric conditions effecting signal prop-

agation and is less dependent on event yield.

Last, we offer a robust catalog of GT events (provided in

Appendix) and signal detections (provided supplemental mate-

rial1) that were produced from this study for subsequent asso-

ciation and localization studies. The evaluation of mechanisms

leading to missed detections that include noise effects at the

site or atmospheric propagation from the source to the receiver

can be exploited in a variety of ways. We assert that additional

research that exploits this catalog can improve detection algo-

rithms through subsequent adaption for both correlated and

uncorrelated noise, as well as document the propagation of

known signals from a GT source.
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APPENDIX: GT EVENTS AND THE ASSOCIATED G2S
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See Table III for the list of G2S profiles used for

raytracing.
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the detection dataset.
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